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ON A ZAREMBA’S CONJECTURE FOR POWERS

TAKAO KOMATSU

Abstract. A conjecture of Zaremba says that for every m ≥ 2 there
exists a reduced fraction a/m such that its simple continued fraction has
all its partial quotients bounded by 5. This conjecture is proved with all
partial quotients bounded by 3 for m being c · 2n-th power of 7 where
n ≥ 0 and c = 1, 3, 5, 7, 9, 11. A more general case is considered.

1. Introduction

Let m ≥ 2 be an integer and let a be an integer with 1 ≤ a ≤ m− 1 and
gcd(a,m) = 1. Suppose that the simple continued fraction expansion of the
rational number a/m is given by

a

m
= [0; a1, a2, . . . , ah] ,

where a1, a2, . . . , an are the partial quotients and ai ≥ 1 (1 ≤ i ≤ h). We
define

K
( a

m

)
= max(a1, a2, . . . , ah) .

For the purpose of this definition we take ah > 1 to guarantee the unique-
ness of the continued fraction expansion, but later on we will also allow
ah = 1.

A conjecture of Zaremba [5, pp. 69 and 76] states that for every m ≥ 2
there exists a reduced fraction a/m such that K(a/m) ≤ 5. In 1986, Nieder-
reiter [2] proved that for m being powers of 2, 3 and 5, there exists an integer
a with 1 ≤ a ≤ m − 1 and gcd(a,m) = 1 such that K(a/m) ≤ 3. In 2002,
Yodphotong and Laohakosol [4] proved that for m being powers of 6, there
exists an integer a with 1 ≤ a ≤ m − 1 and gcd(a,m) = 1 such that
K(a/m) ≤ 5. Nevertheless, K(a/m) ≤ 3 is conjectured except for m = 6.
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In this paper we shall prove that for m = 7c·2n
(n ≥ 0; c = 1, 3, 5, 7, 9, 11)

there exists a reduced fraction a/m such that K(a/m) ≤ 3. A more general
case is considered.

2. Folding’s Lemma and its application

The following famous result is called Folding’s Lemma. See [1] or [3,
Proposition 2]. This is also useful in this paper.

Lemma 1 (Folding’s Lemma). If pn/qn = [a0; a1, a2, . . . , an] and b is a
nonnegative integer, then

pn

qn
+

(−1)n

(b + 1)q2
n

= [a0; a1, a2, . . . , an, b + 1,−an,−an−1, . . . ,−a2,−a1]

= [a0; a1, a2, . . . , an, b, 1, an − 1, an−1, . . . , a2, a1] .

Remark. If b = 0 or an = 1, then the convenient rule [. . . , c, 0, d, . . . ] =
[. . . , c + d, . . . ] ([3, Proposition 3]) is applied.

Theorem 1. If a/m = [0; 1, 1, a3, . . . , ah−1, 2], then

ma + (−1)h

m2
= [0; 1, 1, a3, . . . , ah−1, 3, 1, ah−1, . . . , a3, 2]

and
ma− (−1)h

m2
= [0; 1, 1, a3, . . . , ah−1, 1, 3, ah−1, . . . , a3, 2] .

Corollary 1. If a/m = [0; 1, 1, a3, . . . , ah−1, 2], then we have

2 ≤ K
( a

m

)
≤ K

(
ma± 1

m2

)
= K

(
m2(ma± 1)± 1

m4

)
= K

(
m4(m2(ma± 1)± 1)± 1

m8

)
= · · ·

= K

(
m2n−1a±m2n−2 ±m2n−22 ± · · · ±m2n−2n−2 ±m2n−1 ± 1

m2n

)
.

Proof of Theorem 1. Put n = h, a0 = 0, a1 = a2 = 1, ah = 2 and b = 0 in
Folding’s Lemma. Then we have

a

m
+

(−1)h

m2
= [0; 1, 1, a3, . . . , ah−1, 2, 0, 1, 1, ah−1, . . . , a3, 1, 1]

= [0; 1, 1, a3, . . . , ah−1, 3, 1, ah−1, . . . , a3, 2] .

Another expression can be obtained by considering the different form,
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a/m = [0; 1, 1, a3, . . . , ah−1, 1, 1]. Put n = h + 1, a0 = 0, a1 = a2 = 1,
ah = ah+1 = 1 and b = 0 in Folding Lemma. Then we have

a

m
+

(−1)h+1

m2
= [0; 1, 1, a3, . . . , ah−1, 1, 1, 0, 1, 0, 1, ah−1, . . . , a3, 1, 1]

= [0; 1, 1, a3, . . . , ah−1, 1, 3, ah−1, . . . , a3, 2] .

It is clear that gcd(ma± 1,m2) = 1 and 1 ≤ ma± 1 ≤ m2 − 1. �

3. Main results and examples

Theorem 2. For any nonnegative integer n there exists a positive integer
a with 1 ≤ a < 72n

and gcd(a, 72n
) = 1 such that K(a/72n

) ≤ 3.

Proof. We start from the fractions
5
7

= [0; 1, 2, 2] ,

30
72

= [0; 1, 1, 1, 1, 2, 1, 2︸ ︷︷ ︸
7

] .

Since 30/72 = [0; 1, 1, a3, . . . , ah−1, 2] with ai ≤ 3 (3 ≤ i ≤ h − 1), by
Corollary 1 we have the desired result. �

One can see the further details without difficulty. We apply Theorem 1
to 30/72 to obtain that

72 · 30 + (−1)7

74
=

1469
74

= [0; 1, 1, 1, 1, 2, 1, 3, 1, 1, 2, 1, 1, 2]

and
72 · 30− (−1)7

74
=

1471
74

= [0; 1, 1, 1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2︸ ︷︷ ︸
13

] .

We apply Theorem 1 again to the latter fraction 1471/74. Then we have

74 · 1471 + (−1)13

78
=

3531870
78

= [0; 1, 1, 1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 3, 1, 1, 1, 2, 1, 3, 1, 1, 2, 1, 1, 2]

and

74 · 1471− (−1)13

78
=

3531872
78

= [0; 1, 1, 1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 3, 1, 1, 2, 1, 3, 1, 1, 2, 1, 1, 2] .

In a similar manner, we apply Theorem 1 to one of two expressions to
obtain the reduced fractions A/716 such that K(A/716) ≤ 3. By repeating
the process we have the result.
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Now, we start from e.g.
199
73

= [0; 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2] ,

9861
75

= [0; 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2] ,

475635
77

= [0; 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2] ,

23670145
79

= [0; 1, 1, 2, 2, 1, 1, 2, 1,

2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2],
1141612802

711
= [0; 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1,

2, 2, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2]

and so forth, then apply to each of them Theorem 1, yielding K(a/7c·2n
) ≤ 3

for any nonnegative integer n and c = 3, 5, 7, 9, 11, respectively. It is not
difficult to continue to check the validity for concrete odd numbers c.

Notice that there exists no reduced fraction a/77 satisfying K(a/77) ≤ 2.

4. A more general case

Since Theorem 1 with Corollary 1 does not restrict the denominator to
only 7, we can choose the denominator as powers of any integer greater than
1. If we can find an initial fraction of the form

a

N c
= [0; 1, 1, a3, . . . , ah−1, 2] ,

where ai ≤ 3 (3 ≤ i ≤ h−1), then for any nonnegative integer n there exists
a positive integer a with 1 ≤ a < N c·2n

and gcd(a,N c·2n
) = 1 such that

K(a/N c·2n
) ≤ 3. If ai ≤ 4 (3 ≤ i ≤ h− 1), then K(a/N c·2n

) ≤ 4. If ai ≤ 5
(3 ≤ i ≤ h− 1), then K(a/N c·2n

) ≤ 5.

Conjecture. Let N be an integer with N ≥ 2. For a positive integer n
there exists a positive integer a with 1 ≤ a < N2n

and gcd(a,N2n
) = 1 such

that K(a/N2n
) ≤ 3.

It is easy to see that this holds for N = 2, 3, . . . , 2052 and so forth. Unless
N = 6, 20, 28, 38, 42, 54, 90, 96, . . . , this holds for any nonnegative integer
n. In fact, K(a/m) ≥ 4 (m = 20, 28, 38, 42, 90, 96, 156, 164, 216, 228, 252,
318, 336, 350, 384, 386, 442, 508, 558, 770, 876, 922, 978, 1014, 1155, 1170, 1410,
1450, 1692, 1870, 2052, . . . ) and K(a/m) ≥ 5 (m = 6, 54, 150) for any posi-
tive integer a such that each fraction is reduced. It is unknown if we can
say something more about such a sequence of numbers m.
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It has been unknown whether there are infinitely many m’s such that
K(a/m) = 4 and/or what the largest m satisfying K(a/m) = 5 is if it
exists.

References

[1] M. Mendès France, Sur les fractions continues limitées, Acta Arith., 23 (1973) 207–
215.

[2] Niederreiter, Dyadic fractions with small partial quotients, Monatsh. Math., 101
(1986) 309–315.

[3] A. J. van der Poorten and J. Shallit, Folded continued fractions, J. Number Theory,
40 (1992), 237–250.

[4] M. Yodphotong and V. Laohakosol, Proofs of Zaremba’s conjecture for powers of 6,
Proceedings of the International Conference on Algebra and its Applications (ICAA
2002) (Bangkok), Chulalongkorn Univ., Bangkok, 2002, pp. 278–282.
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